US009104331B2

a2 United States Patent

(10) Patent No.: US 9,104,331 B2

Hsu et al. (45) Date of Patent: *Aug. 11, 2015
(54) SYSTEM AND METHOD FOR USPC 711/156, 161, 166, 162, 165, 206, 209;
INCREMENTAL VIRTUAL MACHINE 707/633, 638, 639, 646, 659, 667,
BACKUP USING STORAGE SYSTEM 710/28, 308; 709/212, 232
FUNCTIONALITY See application file for complete search history.
(71) Applicant: EEM)C Corporation, Hopkinton, MA (56) References Cited
US
U.S. PATENT DOCUMENTS
(72) Inventors: Windsor W. Hsu, San Jose, CA (US);
Jian Xing, Pleasanton, CA (US) 7,155,465 B2* 12/2006 Leeetal.ccccoovvevienienninns 1/1
’ ’ 7,650,341 B1* 1/2010 Oratovsky etal. 707/999.01
. . . 8,010,495 B1* 82011 Kuznetzovetal. ... 707/649
(73) Assignee: EMC Corporation, Hopkinton, MA 8.046,550 B2 10/2011 Feathergill ot al.
(Us) 8,326,803 Bl 12/2012 Stringham
8,347,388 B1* 1/2013 Dutchetal. ... 726/24
(*) Notice: Subject to any disclaimer, the term of this 2007/0244938 A1* 10/2007 Michael et al. 707/204
patent is extended or adjusted under 35 2009/0007106 Al* 1/2009 Araujo etal. 718/1
U.S.C. 154(b) by 186 days. (Continued)
This patent is subject to a terminal dis- OTHER PUBLICATIONS
claimer.
Final Office Action, U.S. Appl. No. 13/436,460, dated Aug. S, 2013,
(21) Appl. No.: 13/631,794 14 pages.
Final Office Action, U.S. Appl. No. 13/436,454, dated Aug. 9, 2013,
(22) Filed: Sep. 28, 2012 13 pages.
. L. (Continued)
(65) Prior Publication Data
US 2014/0095817 Al Apr. 3,2014 Primary Examiner — Reba 1 Elmore
(51) Int.CL (271) Azzi};j;y, Agent, or Firm — Blakely, Sokoloff, Taylor &
GOGF 12/00 (2006.01) aimnan
GO6F 3/06 (2006.01)
GO6F 11/14 (2006.01) 7 ABSTRACT
GO6F 12/12 (2006.01) Techniques for virtual machine incremental backup are
GOG6F 12/08 (2006.01) described herein. According to one embodiment, arequest for
(52) U.S.CL anincremental backing up a virtual machine (VM) is received
CPC GOG6F 3/065 (2013.01); GOGF 11/1438 at a storage system, the request identifying a requested VM
(2013.01); GO6F 11/1451 (2013.01); GO6F disk image associated with a consistent state of the VM. The
11/1479 (2013.01); GOGF 12/08 (2013.01); storage system determines a difference between the requested
GOGF 12/12 (2013.01); GO6F 12/121 VM disk image and a previous VM disk image representing a
(2013.01); GO6F' 2201/815 (2013.01); GOGF previous VM backup. The changes between the requested
2201/84 (2013.01) VM disk image and a previous VM disk image are then
(58) Field of Classification Search transmitted to a target backup storage system.

CPC GOGF 3/065; GOGF 12/08; GOGF 12/12;

GO6F 12/121

1. Backup request to a VMM
with VM ID.
Client
0
Network
03 —~
3.
113 e Client state.
- 102
Virtual
116
4. Full backy|
2. VMM bo Establish a re:usmcwilz
consistent state of the VM. VM state info.

VM Disk File(s)
{e.g., VMDK files)
186

Backup
Logic

Storage System 180

23 Claims, 10 Drawing Sheets

100

Backup Application Server 105

Backup "
B“kufq_zngms
ki

VM Backup

Storagel Backup sum;':‘a(g)e Storage
Unit(s)| Flles 100 Systam
108 | 142 104
5. Backup the

requested VM

image(s).

US 9,104,331 B2
Page 2

(56)

2010/0011178
2010/0049929
2010/0049930
2010/0138827
2011/0010515
2012/0158806
2012/0233123
2012/0233282
2012/0233611
2012/0323853
2012/0324183
2013/0054529
2013/0219161
2013/0262801

References Cited

U.S. PATENT DOCUMENTS

Al* 1/2010 Feathergill

Al* 2/2010 Nagarkar et al.
Al* 2/2010 Pershinetal. ..
Al 6/2010 Frank et al.

Al* 1/2011 Ranade

Al 6/2012 Snyder et al.
Al* 9/2012 Shisheng et al.
Al* 9/2012 Voccio etal.

AL* 9/2012 VocCio .oovvvvvveanene

Al 12/2012 Fries et al.

Al* 12/2012 Chiruvolu et al.
Al* 2/2013 Wangetal.
Al* 82013 Fontignie et al.

Al* 10/2013 Sancheti etal.

....... 711/162
.. 711/162 2013, 12 pages.

. 711/162 Notice of Allowance, U.S. Appl. No. 13/436,454, dated Jan. 6, 2014,

....... 711/162

....... 711/162

e 71312 . .
....... 711/162 * cited by examiner

OTHER PUBLICATIONS
Non-Final Office Action, U.S. Appl. No. 13/436,454, dated May 3,
2013, 12 pages.
Non-Final Office Action, U.S. Appl. No. 13/436,460, dated May 7,

9 pages.

International Search Report and Written Opinion, Application No.
707/639 PCT/US2013/061478, dated Jan. 2, 2014, 11 pages.

709/212 Notice of Allowance, U.S. Appl. No. 13/436,460, dated Feb. 14,

........... 718/1 2014, 8 pages.

Non-Final Office Action, U.S. Appl. No. 13/631,774, dated Dec. 17,

US 9,104,331 B2

Sheet 1 of 10

Aug. 11, 2015

U.S. Patent

} 'OId

‘(s)obew
A paisenbal
ayi dnmoeg ‘g

¥01 S 47"
wajsh 601
ommﬂom (shun amoﬂ_u_m_
abeuo)s oed
dnmyoeg WA

80T
(shiun
ebeiolg

_ 101

| J
_ T
901 Bojelen
aulbug dnyoeg dnyoeg

SOT Jeasag uonesiddy dnyoeg

00}

081 woajsAg abelio)g
EeTH 98T
21607 (se1y MANWA “69)
dnyoeg (s)eid ¥sia WA
% ‘ol Qﬂw WA ‘WA @Y} JO 9Je)S JUBJSISU0D
— Ul 3Senbss B ysliqeis3 o) WNA 2
dnyoeq Ind v \
/
glb Z0T WINA
sbesols | — ZeTIdv
enyl
oy LEMHA _ _
‘91e)s p— —_——
Ausp WA WA
e
oL
PTINETN
Tor
V=TT
"al WA Yim

WA e 011senbaJ dnyoeg |

US 9,104,331 B2

Sheet 2 of 10

Aug. 11, 2015

U.S. Patent

¢ 9ld
081 weisAg abeloig
(s)oly
psjsanbal Vol BT
ay) dmjoeg ‘9 o160 (sely MAWA “69)
dnyoeg (s)and ds1a WA
w01 50T I 2% T "INA @Y1 10 S1B]S 1US]SISUOD
weisAs (shun solld | (s)uun "Oju| 91eIS WA e ysijgels3 01 WNA '€
obeio)g obel - dnyoed [beioig yum jsenbal
dnyoeg S WA dmyoeq |In4 ' \
ocl \ cmﬁﬂw Zhr AAA
- > . ZETIdY
0 ¢0l i _ _
||||||||||||||| 9 — prem——
_ 01 1 el T .. [Eo
| aulbug abeio)g uoneaidnpag “ WA WA
S ﬂ |||||||
v ToT
jJoMmiaN
T
6 qﬁaﬂ_‘: Boeien TO0F
suibu3 dnxoed dmypeg oje)s el
WA
Ayyusp 7T
GOT Janeg uoneolddy dnyoeg b o1y BIUOD WA WA o0
\\V/|\\\|\' 10 91E]S JUL)SISU0D
‘al WA B upm OGT Jeua) [enuIp e ysijge)se
00¢ dnyoeq WA 1senbay °| 0} WINA 1Senbay 'z

US 9,104,331 B2

Sheet 3 of 10

Aug. 11, 2015

U.S. Patent

00¢

‘Bojeied dnyoeq ul INA 93 Jo dnydeg yim sabew 3sip INA I
Sy} Ul paUIRIUOD SB|1} 8Y) dje1D0sse pue sabeuwl ¥sIp NA 84} Ul paulejuod |
Sa|l} 8U} JNOGe UOIIBULIOI BUIULIBIaP 0] sabewl ysIp INA paIdod suy) esied

-

-woishs abelojs dnyoeq 196.e) B 0} NA SU) UM pajeloosse sabewl
%SIP WA Ado2 0] Jusijo By} Yim pajeioosse wajshs abelols e 1sonbay

!

v0€ e

‘WA 34}
UlIM POIBIDOSSE |4V A B BIA A[8jowas A SU) JO a1e)s Jus)sisuod e Ajjuspl

20s — |

‘palyoads Joiuspl INA B uim dnxoeqg INA O 1senbais e puss

US 9,104,331 B2

Sheet 4 of 10

Aug. 11, 2015

U.S. Patent

¥ "Old

_ ‘'sjoysdeus WA
0% \\\._ uo paseq sjoysdeus ysip ale sabewl ysIp NA usym sjoysdeus ysip asel]

q

‘obe.lois dnyoeq 196.e) e 0] sebeuwl 3SIp NA Palsenbal ay) pueg
90% —

'sabewl %sip NA paisanbal ayy Anuap

q

8]0} %
‘WA B UM pajeloosse sabew ysip WA dn Bupoeq Jo jsanbal e aa1909
20— | d

US 9,104,331 B2

Sheet 5 of 10

Aug. 11, 2015

U.S. Patent

G Old

‘goueljdde abeio)s
ey 0} sebew

0} sabew! NA 8y} PPY '§

‘NA m3U 3y

081 welsAg obeloig

WA pajsanbal 7ol 1] 8
8y AdoD "y 91607 (selu MAWA “6°9)
dnyoeg (s)and sid WA
¥0L — | sotT »
soog | | ||t [
. nyoeq |
dnyjoeq obeiois WA PreiS
ozl \ o ZEE NIAA
< > *9.0)50. o _Hm ZETIdY

0 Jo 10618} [ENUIA

||||||||||||||| aylaq — —

_ 0T] 0} NA MaU 201 vIL | .. .| EFF

| B 218317 O waln WA WA

| auibug abeuo)s uonesldnpag jeal) o}

R *l IIIIIII _ 1sonbay ¢
1
L 4

— T -
6 90 n_v 6ojeien 10l
aulbug dnyoeg dnyoeg uslO
TOT Jensas uonealddy dnyoeg /
‘al INA B ypm ‘A 8y} Yy1im pajeidosse
00s 2J0)sal 1sanbay ' | sebewn WA Ausp| ‘g

US 9,104,331 B2

Sheet 6 of 10

Aug. 11, 2015

U.S. Patent

009

9 'OId

809 e

"UoIBI0)ISAI dU] JO uonedo| 19b.e) ay) 0] abewl SIp WA B wod) a1 oY) AdoH

!

909 v

‘Bojereo dnyoeq ybnoayy aji} ay3 O 1n0AE| 8y} sulwis}a(

!

09]

‘B6oje)eo
dnyoeq ybnouy 911 paysanbal ay) Buiuieluod sabewl ysip NA 2U Alnuap|

‘INA B Ulyum a1 e Bulioysad Jo 1sanbal e aAlgosy

US 9,104,331 B2

Sheet 7 of 10

Aug. 11, 2015

U.S. Patent

L "OId

‘sebew ysIp
WA 01 sabueyo

dnyoeq

1se| aouIs sabuey?

suluue)ep pue sebew ysip

WA pPoleisosse Alnuapl "¢

—

oy dmyjoeg -9 J\\.\

7ol —
60}
“L%mﬂw (shun
dnypoeg obeio)g

4723
s9|ld
dnyoeg
NA

B80T
(shiun
obeI0)S

_ 101

90T
auibug dmyoeg

T
Bojeen

dnyoeg

GO Janses uonesiddy dnyoeg

V8L
21607
dnyoeg

I weisAg abelioig

887
Joyoeu]

abueyo ysiq

981
(sey MAWA “6°9)
(s)and ysia WA

081
a ‘pauioads

aJe1s A Yum 1senbal
dnyoeq |ejuswalou]

004

97 21T NNA
\ sbeiois ZETIdV
[enuIA _ |
col k4% ¥IT [, ..]| EFF
sl Idv NA NA
‘WA 8y} JO a)e)s JU)SISuod
. B ysiqeisg NWINA ¢
101
usio
al -ajels
WA B UlIm NINA B 0} WA Amuep| g
Jsenbay dnyjoeq *| .

US 9,104,331 B2

Sheet 8 of 10

Aug. 11, 2015

U.S. Patent

008

8 'Old

‘WA pajsanbal ay} Jo sajy yum
paieloosse sebueyd |eyuswaidul 1sanbal 0} (1dy) 82eusiul buiwwesboud
uoneolidde ue eIA Juai|o Sy} 0] UOIBWIOUI UolRINBIUOD \A 943 Jwsuel |

i

'|dV WA B BIA Ajpiowal NA BU) JO 1e)S JUdISISU0D ay) Ajjuap)

i

‘A 8U1 10 81e1S 1U81SISU0D B ysI|ge)ss 0] 1senbal e puss

i

A
B UM pajeloosse sa|i) dn Buiyoreq [eluswiaIoul Ue 10) 1senbal e aAI0sy

US 9,104,331 B2

Sheet 9 of 10

Aug. 11, 2015

U.S. Patent

006

0L6 — |

6 'Old

‘'sjoysdeus JAA UO paseq _
sjoysdeus ysip ale sabeuwl ¥sIp A dY) usym sjoysdeus ysIp sy} asel] _

+

806 — |

"wo)sAs
abelo)s dnyoeq 106.e) e 01 sabewl ysIp NA 10 sebueyd ayy dn yoeg

+

"SYSIP 9] JO 81B)S UMOUY B Woll sabewl ysip NA 10 sebueyd ay) sulwiseQg

+

06 — |

"SYSIP 8y} JO sve)s
umouy woJ) pabueyd usaq aAey 1Y) sabeuwl 3SIp N Jow 1o auo Anuap|

"uoneuw.Jojul uoneinbiuoo
INA UMmouy yum NA B 1o dn Bujoeg [eiuswiaioul Jo) 1senbal B aA1908y

US 9,104,331 B2

Sheet 10 of 10

Aug. 11, 2015

U.S. Patent

. 0101l
0l "Old (shiun sbeiois
Z107
aoelLU| Jun abeioig
0001

suibug obeloig
uoneoldnpaqg

9001
Joreuiwi g a1eandng

!

¥001
Isuswbeg

!

8001
[03U0D) WB)SAS 91

¢001

aoeLI8)U| 92IAIBS 9|I

+

v

710l
(uoneonddy dnyoeg “6'9)

(shusio

US 9,104,331 B2

1
SYSTEM AND METHOD FOR
INCREMENTAL VIRTUAL MACHINE
BACKUP USING STORAGE SYSTEM
FUNCTIONALITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 13/436,454, entitled “System and Method for File-Based
Subtree Virtual Machine Backup,” filed Mar. 30, 2012, U.S.
patent application Ser. No. 13/436,460, entitled “System and
Method for File-Based Virtual Machine Incremental
Backup,” filed Mar. 30, 2012, and co-pending U.S. patent
application Ser. No. 13/631,774, entitled “System and
Method for Full Virtual Machine Backup Using Storage Sys-
tem Functionality,” filed Sep. 28, 2012, which are incorpo-
rated by reference herein in its entirety.

FIELD OF THE INVENTION

Embodiments of the present invention relate generally to
data storage systems. More particularly, embodiments of the
invention relate to virtual machine (VM) backup.

BACKGROUND

Organizations are increasingly deploying applications on
virtual machines (VMs) to improve Information Technology
(IT) efficiency and application availability. A key benefit of
adopting virtual machines is that they can be hosted on a
smaller number of physical servers (VM servers). This results
in higher server utilization but also means that there are fewer
server resources available to perform backup and/or restore.
The problem is compounded by the unabated growth in data
and applications, which makes it ever more difficult to com-
plete backup and/or restore within the available time window.

One approach to backup and restore in a VM environment
is to handle each VM as though it is a physical machine. This
typically means installing and running a backup agent in each
VM. This approach is server resource intensive and becomes
unwieldy from a management perspective as the number of
virtual machines increases.

Another approach is to back up a VM at the storage level by
making a copy of the storage containers that contain the VM.
Identifying exactly the storage containers that contain the VM
and getting them to be in a consistent state are, however,
challenging.

Another approach is to back up at the VM level. Virtual-
ization vendors such as VMware provide a set of application
programming interface (API) for a backup application. One
may use a VM API such as VMware’s vStorage APIs for Data
Protection (VADP) to pull the data out of the virtual infra-
structure and onto a backup system. This typically requires
routing the data through a proxy server and consumes pre-
cious IT resources.

On incremental backup, a backup software may walk the
file system and find which of the files that has been changed.
However, walking the file system is slow and resource inten-
sive. Another conventional method of incremental backup
uses a changed block tracking (CBT) feature provided by a
virtual machine monitor or manager to keep track of data
blocks changed since last backup. The CBT feature, however,
imposes an overhead on the operation of the VM, and may no
track changes across unexpected system shutdowns. Further-

10

15

20

25

30

35

40

45

50

55

60

65

2

more, not all virtualization vendors provide the feature of
CBT, which limit the effective usage of this approach.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example and not limitation in the figures of the accompanying
drawings in which like references indicate similar elements.

FIG. 1 is a block diagram illustrating a full backup process
according to one embodiment of the invention.

FIG. 2 is another block diagram illustrating a full backup
process according to one embodiment of the invention.

FIG. 3 is a flow diagram illustrating a method of backup
according to one embodiment of the invention.

FIG. 4 is another flow diagram illustrating a method of
backup according to one embodiment of the invention.

FIG. 5 is a block diagram illustrating a restoration process
according to one embodiment of the invention.

FIG. 6 is a flow diagram illustrating a method of restoration
according to one embodiment of the invention.

FIG. 7 is a block diagram illustrating an incremental VM
backup process according to one embodiment of the inven-
tion.

FIG. 8 is a flow diagram illustrating a method for incre-
mental VM backup according to one embodiment of the
invention.

FIG. 9 is a flow diagram illustrating a method for incre-
mental VM backup according to one embodiment of the
invention.

FIG. 10 is a block diagram illustrating a segment storage
engine according to one embodiment of the invention.

DETAILED DESCRIPTION

Various embodiments and aspects of the inventions will be
described with reference to details discussed below, and the
accompanying drawings will illustrate the various embodi-
ments. The following description and drawings are illustra-
tive of the invention and are not to be construed as limiting the
invention. Numerous specific details are described to provide
a thorough understanding of various embodiments of the
present invention. However, in certain instances, well-known
or conventional details are not described in order to provide a
concise discussion of embodiments of the present inventions.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in conjunction with the embodiment
can be included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification do not necessarily all refer to
the same embodiment.

According to some embodiment, a client has one or more
virtual machine monitor or manager (VMM), and each hosts
one or more VM. In this specification, the terms “VM moni-
tor” and “VM manager” are used interchangeably. The client
has a storage system associated with it to store data, and the
client also contains a VM application programming interface
(VM API) via which the VMs are managed. An example of
VM API is VMware’s vStorage APIs for Data Protection
(VADP). A request for backing up a VM is sent from a backup
application server to the client. Through the VM API, the
VMM hosting the VM establishes a consistent state of the
VM. In one embodiment, this involves taking a snapshot of
the VM which causes the VM to be quiesced and snapshots of
the disks associated with the VM to be taken. The backup
application server then identifies the disk snapshots via the
VM API. After the disk snapshots are identified, the backup

US 9,104,331 B2

3

application server notifies the storage system containing the
identified disk snapshots to copy the snapshots to a target
backup storage system. The storage system then copies the
identified disk snapshots to the target backup storage system.
Finally, the backup application server uses VM API to ask
VMM to delete the VM snapshot taken, which causes the
corresponding disk snapshots to be deleted.

According to another embodiment, a virtual center (VC)
manages multiple clients. Each client contains one or more
VMs, and each client has access to a storage system. The
storage system stores content files of VMs in disks of the
storage system. In one embodiment, the VC stores a list of
attributes associated with VMs and the list of attributes are
stored as VM configuration information files. A backup appli-
cation server may send backup request to back up a VM to the
VC. The VC then remotely (e.g., over a network such as the
Internet) requests a VMM hosting the VM to establish a
consistent state of the VM. Afterward, the backup process is
similar to the embodiment where the request is sent to VMM
directly.

In one embodiment, the copied disk snapshots are parsed in
the target backup storage system. Metadata in the disk snap-
shots are interpreted to determine information about the files
contained in the disk snapshots. Such information includes
file attributes such as file name, access control information,
and information about layout of the file within the disk snap-
shots. Such information is then used to populate a backup
catalog of the files in the backed up VM. The copied disk
snapshots may further be deduplicated and stored in the
backup storage system as deduplicated segments.

According to some embodiments, a VM can be restored
from a target backup storage system. The backup application
server identifies the disk snapshots associated with a backup
of the VM through the backup catalog. In one embodiment,
the backup application server then remotely requests a VMM
to provision a new VM to be the target of the restoration via a
VM APL. In one embodiment, provisioning a new VM to be
the target of the restoration includes identifying the list of the
attributes associated with the backup of the VM and provi-
sioning the new VM using the identified list of the attributes.
After new VM is provisioned, the backup application server
sends the identified disk snapshots from the target backup
storage system to the storage system via a VM APIL The
copied disk snapshots are added to the newly provisioned VM
via the VM API. The VM is then restored.

According to some embodiment, a user may also utilize a
backup application server for incremental backup ofa VM. In
one embodiment, a request for incrementally backing up a
VM is sent from a backup application server to a VMM of a
client hosting the VM. The backup application server then
remotely takes a snapshot of the VM through a VM API. This
includes quiescing the VM and taking a VM snapshot, which
causes disk snapshots associated with the VM to be taken. The
backup application server notifies the storage system contain-
ing the identified disk snapshots to copy the identified disk
snapshots to a target backup storage system. The storage
system then identifies the changes that have occurred since a
last backup, for example, by comparing the disk snapshots of
the VM with disk snapshots associated with a previous
backup of the same VM. In one embodiment, the storage
system sends only the changes between the snapshots to the
backup storage system, without having to transmit the entire
disk snapshots.

FIG. 1 is a block diagram illustrating a backup process
according to one embodiment of the invention. Referring to
FIG. 1, system 100 includes, but is not limited to, one or more
client systems 101-102 communicatively coupled to backup

10

15

20

25

30

35

40

45

50

55

60

65

4

storage system 104, backup application server 105 and stor-
age system 180 over network 103. Clients 101-102 may be
any type of clients such as a server, a personal computer (e.g.,
desktops, laptops, and tablets), a “thin” client, a personal
digital assistant (PDA), a Web enabled system, a gaming
device, a media player, or a mobile phone (e.g., Smartphone),
etc. Network 103 may be any type of network such as a local
area network (LAN), a wide area network (WAN) such as
Internet, a corporate intranet, a metropolitan area network
(MAN), a storage area network (SAN), a bus, or a combina-
tion thereof, wired and/or wireless.

Backup storage system 104 may include any type of server
or cluster of servers. For example, backup storage system 104
may be a storage server used for any of various different
purposes, such as to provide multiple users with access to
shared data and/or to back up mission critical data. Backup
storage system 104 may be, for example, a file server (e.g., an
appliance used to provide NAS capability), a block-based
storage server (e.g., used to provide SAN capability), a uni-
fied storage device (e.g., one which combines NAS and SAN
capabilities), a nearline storage device, a direct attached stor-
age (DAS) device, a tape backup device, or essentially any
other type of data storage device. Backup storage system 104
may have a distributed architecture, or all of its components
may be integrated into a single unit. Backup storage system
104 may be implemented as part of an archive and/or backup
storage system such as a de-duplication storage system avail-
able from EMC® Corporation of Hopkinton, Mass.

In one embodiment, backup application server 105
includes, but not limited to, a backup engine 106, which
contains a backup catalog 111. Backup application server 105
coordinates with backup storage system 104, storage system
180, and clients 101-102 to run various backup operations.
Backup engine 106 may perform both backup and restore
functions.

In one embodiment, backup storage system 104 includes,
but is not limited to, deduplication storage engine 107, and
one or more storage units 108-109 communicatively coupled
to each other. Storage units 108-109 may be implemented
locally (e.g., single node operating environment) or remotely
(e.g., multi-node operating environment) via interconnect
120, which may be a bus and/or a network. In one embodi-
ment, one of the storage units 108-109 operates as an active
storage to receive and store external or fresh user data, while
the other storage unit operates as a target storage unit to
periodically archive data from the active storage unit accord-
ing to an archiving policy or scheme. Storage units 108-109
may be, for example, conventional magnetic disks, optical
disks such as CD-ROM or DVD based storage, magnetic tape
storage, magneto-optical (MO) storage media, solid state
disks, flash memory based devices, or any other type of non-
volatile storage devices suitable for storing large volumes of
data. Storage units 108-109 may also be combinations of such
devices. In the case of disk storage media, the storage units
108-109 may be organized into one or more volumes of
Redundant Array of Inexpensive Disks (RAID). Note that in
one embodiment, backup application server 105 and backup
storage system 104 are integrated into one single system.

In response to a data file to be stored in storage units
108-109, optional deduplication storage engine 107 is con-
figured to segment the data file into multiple segments
according to a variety of segmentation policies or rules.
Deduplication storage engine 107 only stores a segment in a
storage unit if the segment has not been previously stored in
the storage unit. In the event that a segment has been previ-
ously stored, metadata stores information enabling the recon-
struction of a file using the previously stored segment. As a

US 9,104,331 B2

5

result, segments of data files are stored in a deduplicated
manner, either within each of storage units 108-109 or across
at least some of storage units 108-109. Data stored in the
storage units may be stored in a compressed form (e.g., loss-
less compression: Huffman coding, Lempel-Ziv Welch cod-
ing; delta encoding: a reference to a segment plus a differ-
ence; subsegmenting: a list of subsegments or references to
subsegments, etc.). In one embodiment, different storage
units may use different compression methods (e.g., main or
active storage unit from other storage units, one storage unit
from another storage unit, etc.).

The metadata may be stored in at least some of storage
units 108-109, such that files can be accessed independent of
another storage unit. Metadata of each storage unit includes
enough information to provide access to the files it contains.
When an active storage unit fails, metadata contained in
another storage unit may be utilized to recover the active
storage unit. When one storage unit is unavailable (e.g., the
storage unit has failed, or is being upgraded, etc.), the system
remains up to provide access to any file not stored in the failed
storage unit. When a file is deleted, the metadata associated
with the files in the system is updated to reflect that the file has
been deleted.

In one embodiment, the metadata information includes a
file name, a storage unit where the segments associated with
the file name are stored, reconstruction information for the
file using the segments, and any other appropriate metadata
information. In one embodiment, a copy of the metadata is
stored on a storage unit for files stored on a storage unit so that
files that are stored on the storage unit can be accessed using
only the information stored on the storage unit. In one
embodiment, a main set of metadata information can be
reconstructed by using information of other storage units
associated with the backup storage system in the event that
the main metadata is lost, corrupted, damaged, etc. Metadata
for a storage unit can be reconstructed using metadata infor-
mation stored on a main storage unit or other storage unit
(e.g., replica storage unit). Metadata information further
includes index information (e.g., location information for
segments in storage units).

In one embodiment, the backup storage system as shown in
FIG. 1 may be used as a tier of storage in a storage hierarchy
that comprises other tiers of storage. One or more tiers of
storage in this hierarchy may utilize different kinds of storage
devices and/or may be optimized for different characteristics
such as random update performance. Files are periodically
moved among the tiers based on data management policies to
achieve a cost-effective match to the current storage require-
ments of the files. For example, a file may initially be stored
in a tier of storage that offers high performance for reads and
writes. As the file ages, it may be moved into a tier of storage
according to one embodiment of the invention. In various
embodiments, tiers include different storage technologies
(e.g., tape, hard drives, semiconductor-based memories, opti-
cal drives, etc.), different locations (e.g., local computer stor-
age, local network storage, remote network storage, distrib-
uted storage, cloud storage, archive storage, vault storage,
etc.), or any other appropriate storage for a tiered data storage
system.

Referring back to FIG. 1, backup engine 106 is configured
to backup data from client systems 101-102 and to store the
backed up data in one or more of storage units 108 of backup
storage system 104, where the data may be deduplicated by
deduplication storage engine 107. In this example, a user
(e.g., an administrator) initiates a backup request, directly or

10

15

20

25

30

35

40

45

50

55

60

65

6

through a backup schedule, of a VM, such as VM 113 within
client 102. The user issues the request with the identification
ofthe VM, VM 113.

As shown in FIG. 1, the to-be-backed-up VM 113 resides at
client 102. Client 102 includes one or more VMs 113-114
hosted by VMM 112. VMM 112 also includes an application
programming interface (API) 132, through which VMM 112
manages VMs 113-114. In one embodiment, the APl is a VM
API such as VMware’s vStorage APIs for Data Protection
(VADP). In addition, client 102 is communicatively coupled
with storage system 180.

Storage system 180 may include any type of server or
cluster of servers. For example, storage system 180 may be a
storage server used for any of various different purposes, such
as to provide multiple users with access to shared data and/or
to back up mission critical data. Storage system 180 may be,
for example, a file server (e.g., an appliance used to provide
NAS capability), a block-based storage server (e.g., used to
provide SAN capability), a unified storage device (e.g., one
which combines NAS and SAN capabilities), a nearline stor-
age device, a direct attached storage (DAS) device, or essen-
tially any other type of data storage device. Storage system
180 may have a distributed architecture, or all of its compo-
nents may be integrated into a single unit. Storage system 180
may be implemented as part of a storage system available
from EMC® Corporation of Hopkinton, Mass.

Storage system 180 contains backup logic 184 that man-
ages both backup and restore processes within the storage
system. Storage system 180 also contains VM disk files 186
that are the content files of the VMs. Note that a storage
system of a client may also be called the primary storage of
the client to distinguish the storage from backup storage
systems.

A virtual machine represents a completely isolated operat-
ing environment with a dedicated set of virtual resources
associated with it. A virtual machine may be installed or
launched as a guest operating system (OS) hosted by a host
OS or a hypervisor. Typically, a host OS or hypervisor repre-
sents a virtual machine monitor (VMM) for managing the
hosted virtual machines. A virtual machine can be any type of
virtual machines, such as, for example, hardware emulation,
full virtualization, para-virtualization, and operating system-
level virtualization virtual machines. Different virtual
machines hosted by a server may have the same or different
privilege levels for accessing different resources. Here VMM
112 manages both VM 113 and VM 114.

Referring back to FIG. 1, task boxes 1 to 5 illustrate the
order in which operations are performed according to one
embodiment of the invention. The process is initiated with a
request to back up a VM. The request may come from a client
based on a backup schedule, or it may come from a user
directly through a user interface. At task box 1, backup engine
106 sends out a request to backup with a VM identifier (indi-
cating VM 113 in this example) to VMM 112, which hosts the
to-be-backed-up VM 113. Backup engine 106 directs the
request to VMM 112 as backup application server 105 knows
VM location information. Backup application server 105 may
obtain VM information through various ways. For example,
backup application server 105 may synchronize with VMM
112 remotely. Onward to task box 2, VMM 112 then estab-
lishes a consistent state of VM 113. In one embodiment,
VMM 112 establishes the consistent state of VM 113 by
taking a VM snapshot. The VM snapshot triggers the creation
of one or more snapshots of the content files associated with
the VM (e.g. VM disk images) in and/or by storage system
180. Such snapshots are referred to as disk snapshots in this
specification. In task box 3, via API 132, backup engine 106

US 9,104,331 B2

7

remotely identifies the consistent state of VM 113, which
includes a list of the disk snapshots created in storage system
180 in one embodiment. Backup engine 106 then requests
storage system 180 to send VM disk images associated with
the consistent state of the VM to a target backup storage at
task box 4. In one embodiment, the VM disk images are disk
snapshots resulting from VM snapshot initiated by VMM
112. Finally attask box 5, backup logic 184 then identifies the
requested VM disk images. In this example, they are repre-
sented by VM disk file 186. VM disk file 186 may take a
format of a virtual machine disk (VMDK) provided by
VMware. Backup logic 184 copies VM disk file 186 associ-
ated with VM 113 to backup storage system 104. In one
embodiment, the disk snapshots for VM 113 are parsed and
metadata in the disk snapshots are interpreted to determine
information about the files contained in the disk snapshots.
Such information includes file attributes such as file name,
access control information, and information about layout of
the files within the disk snapshot. The information is then
used to populate a backup catalog 111 of the files in the VM
that was backed up. The disk snapshots are then saved as VM
backup files 142 in storage unit 108. According to one
embodiment, the backup content may be further deduplicated
into deduplicated segments and the deduplicated segments
are then stored in one or more physical disks of the backup
storage system. In one embodiment, backup storage system
104 remotely requests VMM 112 to delete the VM snapshot
taken of VM 113, which causes the corresponding disk snap-
shots of VM 113 to be deleted. Note that in one embodiment,
the target backup storage system may be proxy server. In one
embodiment, a proxy server is utilized when storage system
180 and backup storage system 104 are not compatible.

In one embodiment, storage system 180 divides the disk
snapshots into segments and copies only the segments that do
not already exist in backup storage system 104 when backup
storage system 104 is a deduplicating storage system. In one
embodiment, the segments are variable sized and the segment
boundaries are defined by the content of the data. Such seg-
ments (also referred to as chunks) may be segmented within
storage system 180 using a predetermined chunking algo-
rithm. For each of the segments, a fingerprint is generated
using a predetermined hash function. Storage system 180
may initially transmit fingerprints of the segments to backup
storage system 104 without transmitting the actual segments.
Based on the fingerprints received from storage system 180,
deduplication storage engine 107 may determine which of the
segments have already been stored in storage units 108-109,
for example, by comparing the fingerprints received from
storage system 180 and those maintained locally within
backup storage system 104. For those segments that have not
been stored in storage units 108-109, backup storage system
104 transmits identifying information of the missing seg-
ments to storage system 180, such as the fingerprints of the
missing segments. In response, storage system 180 identifies
the missing segments based on the identifying information
received from backup storage system 104 and only transmits
the missing segments over to backup storage system 104.

In one embodiment, via API 132, backup engine 106 col-
lects attributes associated with the VM being backed up (e.g.
CPU, memory, disk configuration) and stores the VM
attributes in backup catalog 111. The attributes are subse-
quently used to provision a new VM to be the target of resto-
ration.

FIG. 2 is another block diagram illustrating a full backup
process according to one embodiment of the invention. The
systems in FIG. 2 are similar to the systems in FIG. 1 and the
same or similar references indicate elements or components

10

15

20

25

30

35

40

45

50

55

60

65

8

having the same or similar functionalities. Also similar to
FIG. 1, task boxes 1 to 6 illustrate the order in which opera-
tions are performed according to one embodiment of the
invention. As shown in FIG. 2, virtual center 150 manages
VM configuration information of client 102, where the to-be-
backed-up VM 113 resides. A virtual center may manage VM
configuration information of multiple clients, and each client
contains one or more VMs managed by a VMM running
therein. A virtual center may be communicatively coupled
with clients, backup application server, and backup storage
systems. VC 150 may obtain VM information through various
ways. For example, VC 150 may remotely synchronize with
VMMs within the network, or VMMs may update VC 150
whenever status change happens with VMs. In this example,
virtual center 150 communicatively coupled with backup
application server 105 and clients 101 and 102. Backup
engine 106 sends out a request to backup with a VM identifier
(indicating VM 113 in this example) to VC 150. VC 150
identifies that client 102 manages VMM 112, which hosts VM
113. Then at task box 2, VC 150 requests VMM 112 to
establish a consistent state of VM 113. The following steps in
task boxes 3-6 are similar to the task boxes 2-5 as illustrated
in FIG. 1.

FIG. 3 is a flow diagram illustrating a method of backup
according to one embodiment of the invention. Method 300
may be performed by backup application server 105, more
specifically backup engine 106, which may be implemented
as processing logic in software, hardware, or a combination
thereof. At block 302, the method starts by a backup applica-
tion server sending a request of VM backup with a requested
VM identifier specified. The request may be sent to a VMM
hosting the VM directly when the backup application server
knows the VM location information in one embodiment. The
request may be sent to a virtual center when the backup
application server does not know VM location information in
another embodiment. In the latter case, the virtual center then
locates the VM and the VMM hosting the VM and requests a
backup. The request to establish consistent state involves
generating a VM snapshot at VMM in one embodiment. Then
at block 304, backup engine 106 remotely identifies the con-
sistent state of the VM via a VM API. Backup engine 106 then
requests a storage system associated with the VM to copy VM
disk images associated with the VM to a target backup storage
system at block 306. In one embodiment, the requested VM
disk images are disk snapshots based on a VM snapshot
initiated by a VMM hosting the VM being backed up. Option-
ally, backup engine 106 may parse the copied VM disk
images associated with the requested VM at block 308 to
determine information about the files contained in the VM
disk images. Based on the parsing, backup engine 106 asso-
ciates the files contained in the VM disk images with backup
of'the VM in a backup catalog. The backup catalog then can
be queried subsequently for backup and restore purposes. In
addition, the VM disk images may further be deduplicated
into deduplicated segments and stored in a storage unit of the
backup storage system in a deduplicated manner. Note that in
one embodiment, the backup VM disk images from the stor-
age system may be copied to a proxy server first before they
are stored in a backup storage system.

FIG. 4 is another flow diagram illustrating a method of
backup according to one embodiment of the invention.
Method 400 may be performed by storage system 180, more
specifically backup logic 184. At block 402, the method starts
with receiving a request for backing up VM disk images
associated with a specified VM. In one embodiment, the
requested VM disk images are disk snapshots based ona VM
snapshot initiated by a VMM hosting the VM being backed

US 9,104,331 B2

9

up. Then at block 404, the requested VM disk images are
identified. The identified disk snapshots are then sent to a
target backup storage system at block 406. Note the identified
VM disk images may be sent to a proxy server instead in some
embodiment. After the disk snapshots are sent, optionally in
one embodiment when the VM disk images are disk snap-
shots, the disk snapshots may be erased at block 408. The
erasing of disk snapshots is triggered by a deleting VM snap-
shot initiated remotely by a backup application server via a
VM API in one embodiment. Note when the target storage is
a deduplicating backup storage, storage system 180 may
divide the disk snapshots into segments and send over only
the segments that do not already exist in the target storage, as
described above. In one embodiment, the segments are vari-
able sized and the segment boundaries are defined by the
content of the data.

FIG. 5 is a block diagram illustrating a restoration process
according to one embodiment of the invention. The systems
in FIG. 5 are similar to systems in FIG. 1 and the same or
similar references indicate elements or components having
the same or similar functionalities. Also similar to FIG. 1, task
boxes 1 to 5 illustrate the order in which operations are
performed according to one embodiment of the invention. In
this example, VM 113 is requested to be restored at client 102.
Attask box 1, backup engine 106 receives a request to restore
witha VM identification, which indicates the requested VM is
VM 113. The request may come from a client based on a user
request, or it may come from a user directly through a user
interface. At task box 2, backup engine 106 identifies the VM
disk images associated with the backup of the VM. In one
embodiment, the VM disk images associated with the backup
of'the VM are disk snapshots. In one embodiment, it may get
the information about VM disk images through backup cata-
log 111. Backup catalog 111 contains file name, access con-
trol information, and information about layout of the files
within a particular VM disk image. Through backup catalog
111, backup engine 106 identifies the requested VM disk
images, which is VM backup files 142 stored in storage unit
108 in this example. Then at task box 3, backup engine 106
requests VMM 112, where the restored VM 113 will be
hosted, to create a new VM to be the target of restoration via
API1132. In one embodiment, VM attributes stored in backup
catalog 111 is sent over to VMM 112. VMM 112 then creates
a VM and provisions the VM using the VM attributes sent
over by backup engine 106. At task box 4, backup engine 106
requests backup storage system 104 to copy VM disk images
associated with VM 113, which is stored as VM backup files
142 in backup storage system 104, to storage system 180. In
storage system 180, the VM disk images will then associated
with the new provisioned VM. Note in one embodiment,
storage system 180 is a deduplicating storage system. In
which case, backup storage system 104 divides the saved VM
disk images (VM backup files 142 in the example) into seg-
ments and sends over only the segments that do not already
exist in storage system 180. The final step in the process is
task box 5, where the copied over VM disk images are then
associated with the newly provisioned VM 113.

Embodiments of the invention may also be used to restore
a file within a backed up VM. FIG. 6 is a flow diagram
illustrating a method of restoration according to one embodi-
ment of the invention. Method 600 may be performed by
backup application server 105, more specifically backup
engine 106. At block 602, a request to restore a file within a
VM is received at a backup application server, the backup
application server is communicatively coupled with a backup
storage system that contains backup of the file. The request
may come from a client based on a user request, or it may

5

10

15

20

25

30

35

40

45

50

55

60

65

10

come from a user directly through a user interface. A backup
engine of the backup application server then identifies the VM
disk images containing the requested file or deduplicated
segments associated with the requested file through backup
catalog. In one embodiment, the VM disk images are disk
snapshots associated with the VM. The disk snapshots may be
stored in the storage units of the backup storage system, for
example storage unit 108 as a part of VM backup files 142 as
shown in FIG. 5. The backup engine then determines the
layout of the requested file through a backup catalog or other
metadata such as fingerprints of the deduplicated segments at
block 606. The identified file is then copied to a storage
system associated with the requesting client at block 608. In
one embodiment, based on the layout of the requested file, the
file is reconstructed at the backup storage system and then
sent over to the storage system. At the storage system, the file
is then copied to the specified location and the VM requesting
the restoration then will be able to access to the file. In a
deduplicated storage system, the file may be reconstructed by
deduplicated storage engine 107 from the deduplicated seg-
ments using the metadata such as fingerprints. Alternatively,
the metadata may be transmitted to storage system 180 and
the file is reconstructed by the storage system 180 based on
the metadata. If storage system 180 is a deduplicated storage
system, only the segments that do not exist in storage system
180 may be transmitted from backup storage system 104.

According to one embodiment, a storage system performs
a comparison such as a “diff” operation of the identified VM
disk images against the corresponding VM disk images asso-
ciated with a previous snapshot of the VM to determine the
changes since the last backup (e.g., the delta between the VM
disk image and the last backup). In one embodiment, the VM
disk image is a disk snapshot. In another embodiment, the
storage system tracks the changes to a disk since the last disk
snapshot was taken and determines the changes since the last
backup by using this tracking information.

The changes since the last backup are copied to the backup
storage system for backup. In one embodiment, the backup
storage system creates a copy of the previous full backup in
the backup storage system and applies the copied changes to
the copy of the previous full backup to obtain a synthetic full
backup. In another embodiment, the storage system sends the
changes since last backup together with recipes to the backup
storage system to enable the backup storage system to create
a synthetic full backup based on contents of the previous full
backup.

FIG. 7 is a block diagram illustrating an incremental VM
backup process according to one embodiment of the inven-
tion. The systems in FIG. 7 are similar to the systems in FI1G.
1 and the same or similar references indicate elements having
the same or similar functionalities. Also similarto FIG. 1, task
boxes 1 to 6 illustrate the order in which operations are
performed according to one embodiment of the invention.
The process starts with a request of incremental backup of a
VM at task box 1. The request may come from a client based
on a user request, or it may come from a user directly through
auser interface. At task box 1, backup engine 106 sends out a
request for VM configuration information with a VM identi-
fier (VM 113 in this example) to VMM 112, which hosts VM
113 at client 102. Note when backup application server 105 is
unclear of the VM location, it may send the incremental VM
backup request to virtual center 150, which manages client of
a network, similarly as shown in FIG. 2. Then at task box 2,
VMM establishes a consistent state of VM 113. The consis-
tent state of VM 113 may be established by taking a VM
snapshot through VM API 132. The VM snapshot may result
in the creation of one or more disk snapshots in and/or by

US 9,104,331 B2

11

storage system 180. Onward to task box 3, backup application
server 105 then identifies the VM consistent state via APT1132.
Backup application server 105 then sends a request for incre-
mental backup to storage system 180 at task box 4 with
consistent VM state information specified.

Attask box 5, the VM disk images associated with the VM
are identified. In one embodiment, the VM disk images are
disk snapshots based on VM snapshot taken by VMM 112.
Backup logic 184 identifies the VM disk images associated
with the VM, and they are represented by VM disk files 186.
VM disk files 186 may take a format of a virtual machine disk
(VMDK) provided by VMware. For each identified VM disk
image, disk change tracker 788 determines the changes since
the last backup. In one embodiment, disk change tracker 788
performs a comparison such as a “diff” operation of the
identified disk snapshot against the corresponding disk snap-
shot associated with a previous snapshot of the VM to deter-
mine the changes since the last backup. In another embodi-
ment, disk change tracker 788 tracks the changes to a disk
since the last disk snapshot was taken and determines the
changes since the last backup by using this tracking informa-
tion. At task box 6, the identified changes of VM disk images
are backed up to backup storage system 104. After comple-
tion of the backup, optionally backup application server 105
sends a request to VMM 112 to delete the VM snapshot taken
and causes storage system 180 to deletes the corresponding
disk snapshot, when the VM disk images are disk snapshots
based on VM snapshots in some embodiments. Note in one
embodiment, VMM may keep track of disk changes within
the associated storage system. In the example, VMM 112 may
keep track of disk changes within storage system 180.

FIG. 8 is a flow diagram illustrating a method for incre-
mental VM backup according to one embodiment of the
invention. Method 800 may be performed by backup engine
106 of FIG. 1, which may be implemented as processing logic
in software, hardware, or a combination thereof. Referring to
FIG. 8, at block 802, a backup engine of a backup application
server receives a request for an incremental backup of a VM
at a backup storage system. The backup engine then sends a
request to establish a consistent state of the VM at block 804.
In one embodiment, the request may be sent to a VMM
hosting the VM directly. In another embodiment, the request
may be sent to a virtual center managing the clients with a
network, where the virtual center contains VM location infor-
mation. The VM consistent state may be established by taking
a VM snapshot by the hosting VMM. The VM snapshots may
result in disk snapshots associated with the VM at a storage
system associated with the client managing the VM. Once the
VM consistent state is established, the backup application
server may remotely identify the consistent state of the VM
viaa VM API at block 806. Then the backup engine requests
the storage system to copy incremental VM disk images asso-
ciated with the VM to a target backup storage system.

FIG. 9 is a flow diagram illustrating a method for incre-
mental VM backup according to one embodiment of the
invention. Method 900 may be performed by storage system
180 of FIG. 7. At block 902, the method starts with receiving
a request for incremental backing up a VM with a known
consistent state information of the VM at a storage system. As
shown in FIG. 7, the known consistent state information of the
VM may be received from a backup application server like
backup application server 105. In one embodiment, the
known consistent state information of the VM is disk snap-
shots resulting from a VM snapshot. One or more VM disk
images that have been changed from known states of the disks
are identified at block 904. Subsequently the method deter-
mines the changes of VM disk images from a known state of

20

40

45

50

55

12

the disks at block 906. In one embodiment, disk change
tracker 788 may perform the operations of blocks 906 and
908. In another embodiment, disk change tracker 788 is inte-
grated with backup logic 184, and backup logic 184 performs
both operations. In one embodiment, the VM disk images are
disk snapshots, and the changes of disk snapshots may be
determined by a comparison such as “diff” operation of the
identified disk snapshot against the corresponding disk snap-
shot associated with a previous snapshot of the VM. In
another embodiment, the changes of disk snapshots are
tracked by either disk change tracker 788 or backup logic 184.
The changes of VM disk images are then backed up to a target
backup storage system at block 908.

Note even through in one embodiment of FIG. 7, disk
change tracker 788 are illustrated as implemented within a
storage system, disk change tracker may be implemented at a
client, and it may be associated witha VMM managing VMs.
VMM may keep track of disk changes of an associated stor-
age system. After the changes of disk snapshots are backed
up, optionally the backup storage system may remotely delete
the VM snapshot taken via the VM APIL, and the deletion
results in the disk snapshots being erased when the VM disk
images are disk snapshots in one embodiment at block 910.

FIG. 10 is a block diagram illustrating a segment storage
engine according to one embodiment of the invention. For
example, deduplication storage engine 1000 may be imple-
mented as part of a deduplication storage system as described
above, such as deduplication storage engine 107 of FIG. 1.
Referring to FIG. 10, in one embodiment, deduplication stor-
age engine 1000 includes file service interface 1002, seg-
menter 1004, duplicate eliminator 1006, file system control
1008, and storage unit interface 1012. Deduplication storage
engine 1000 receives a file or files (or data item(s)) via file
service interface 1002, which may be part of a file system
namespace of a file system associated with the deduplication
storage engine 1000. The file system namespace refers to the
way files are identified and organized in the system. An
example is to organize the files hierarchically into directories
or folders. File service interface 1002 supports a variety of
protocols, including a network file system (NFS), a common
Internet file system (CIFS), and a virtual tape library interface
(VTL), etc.

The file(s) is/are processed by segmenter 1004 and file
system control 1008. Segmenter 1004 breaks the file(s) into
variable-length segments based on a variety of rules or con-
siderations. For example, the file(s) may be broken into seg-
ments by identifying segment boundaries using a content-
based technique (e.g., a function is calculated at various
locations of a file, when the function is equal to a value or
when the value is a minimum, a maximum, or other value
relative to other function values calculated for the file), a
non-content-based technique (e.g., based on size of the seg-
ment), or any other appropriate technique. In one embodi-
ment, a segment is restricted to a minimum and/or maximum
length, to a minimum or maximum number of segments per
file, or any other appropriate limitation.

In one embodiment, file system control 1008 processes
information to indicate the segment(s) association with a file.
In some embodiments, a list of fingerprints is used to indicate
segment(s) associated with a file. File system control 1008
passes segment association information (e.g., representative
data such as a fingerprint) to an index (not shown). The index
is used to locate stored segments in storage units 1010 via
storage unit interface 1012. Duplicate eliminator 1006 iden-
tifies whether a newly received segment has already been
stored in storage units 1010. In the event that a segment has
already been stored in storage unit(s), a reference to the

US 9,104,331 B2

13

previously stored segment is stored, for example, in a segment
tree associated with the file, instead of storing the newly
received segment. A segment tree of a file may include one or
more nodes and each node represents or references one of the
deduplicated segments stored in storage units 1010 that make
up the file. Segments are then packed by a container manager
(not shown) into one or more storage containers stored in
storage units 1010. The deduplicated segments may be fur-
ther compressed using a variation of compression algorithms,
such as a Lempel-Ziv algorithm before being stored.

When a file is to be retrieved, file service interface 1002 is
configured to communicate with file system control 1008 to
identify appropriate segments stored in storage units 1010 via
storage unit interface 1012. Storage unit interface 1012 may
be implemented as part of a container manager. File system
control 1008 communicates with an index (not shown) to
locate appropriate segments stored in storage units via stor-
age unit interface 1012. Appropriate segments are retrieved
from the associated containers via the container manager and
are used to construct the requested file. The file is provided via
interface 1002 in response to the request. In one embodiment,
file system control 1008 utilizes a tree (e.g., a segment tree) of
content-based identifiers (e.g., fingerprints) to associate a file
with data segments and their locations in storage unit(s). In
the event that a segment associated with a given file or file
changes, the content-based identifiers will change and the
changes will ripple from the bottom to the top of the tree
associated with the file efficiently since the appropriate con-
tent-based identifiers are easily identified using the tree struc-
ture.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations lead-
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

Embodiments of the invention also relate to an apparatus
for performing the operations herein. Such a computer pro-
gram is stored in a non-transitory computer readable medium.
A machine-readable medium includes any mechanism for
storing information in a form readable by a machine (e.g., a
computer). For example, a machine-readable (e.g., computer-
readable) medium includes a machine (e.g., a computer) read-
able storage medium (e.g., read only memory (“ROM”), ran-
dom access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory devices).

The processes or methods depicted in the preceding figures
may be performed by processing logic that comprises hard-
ware (e.g. circuitry, dedicated logic, etc.), software (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

14

embodied on a non-transitory computer readable medium), or
acombination of both. Although the processes or methods are
described above in terms of some sequential operations, it
should be appreciated that some of the operations described
may be performed in a different order. Moreover, some opera-
tions may be performed in parallel rather than sequentially.

Embodiments of the present invention are not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of embodiments of
the invention as described herein.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to specific exemplary
embodiments thereof. It will be evident that various modifi-
cations may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
following claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense.

What is claimed is:

1. A computer-implemented method, comprising:

receiving at a storage system a virtual machine (VM) snap-

shot from a host system, the snapshot representing a
consistent state of a VM hosted by the host system,
wherein the storage system is communicatively coupled
to the host system over a storage network, wherein the
VM snapshot was captured by a virtual machine monitor
(VM) in response to a first request received from a
backup application server via a VMM application pro-
gramming interface (API) over a network, and wherein
the VMM manages a plurality of VMs within the host
system,

storing the VM snapshot in a persistent storage device of

the storage system as a VM disk image file;
receiving a second request at the storage system for an
incremental backup of the VM from the backup appli-
cation server over the network, the second request
including a VM identifier identifying a requested VM
disk image associated with a consistent state of the VM

in response to the second request, identifying by backup
logic of the storage system the VM disk image file cor-
responding to the requested VM disk image from the
persistent storage device based on the VM identifier;

determining, by a disk change tracker of the storage sys-
tem, a difference between the requested VM disk image
and a previous VM disk image representing a previous
VM backup; and

transmitting, by the backup logic of the storage system,
changes between the requested VM disk image and the
previous VM disk image to a target backup storage sys-
tem directly without going through the backup applica-
tion server, wherein the backup application server is a
separate server for managing backup of a plurality of
storage systems over the network.

2. The method of claim 1, wherein the VM disk image
includes one or more disk snapshots created at the storage
system based on a VM snapshot created at the VMM.

3. The method of claim 2, further comprising deleting the
one or more disk snapshots after the changes has been trans-
mitted to the target backup storage system.

4. The method of claim 3, wherein deletion ofthe one more
disk snapshots is performed by erasing a VM snapshot initi-
ated by the VMM.

5. The method of claim 2, wherein the difference between
the disk snapshot and the previous disk snapshot is deter-
mined based on disk change tracking by the storage system.

US 9,104,331 B2

15

6. The method of claim 1, further comprising creating at the
target backup storage system the requested VM disk image
based on the transmitted changes and the previous VM disk
image.

7. The method of claim 1, wherein the storage system is a
deduplicating storage system.

8. The method of claim 1, wherein the target backup stor-
age system is a deduplicating storage system.

9. The method of claim 1, wherein the target backup stor-
age system is a proxy server.

10. A non-transitory computer-readable storage medium
having instructions stored therein, which when executed by a
processor, cause the processor to perform operations, the
operations comprising:

receiving at a storage system a virtual machine (VM) snap-

shot from a host system, the snapshot representing a
consistent state of a VM hosted by the host system,
wherein the storage system is communicatively coupled
to the host system over a storage network, wherein the
VM snapshot was captured by a virtual machine monitor
(VM) in response to a first request received from a
backup application server via a VMM application pro-
gramming interface (API) over a network, and wherein
the VMM manages a plurality of VMs within the host
system:

storing the VM snapshot in a persistent storage device of

the storage system as a VM disk image file;
receiving a second request at the storage system for an
incremental backup of the VM from the backup appli-
cation server over the network network, the second
request including a VM identifier identifying a requested
VM disk image associated with a consistent state of the
VM;

in response to the second request, identifying by backup
logic of the storage system the VM disk image file cor-
responding to the requested VM disk image from the
persistent storage device based on the VM identifier;

determining, by a disk change tracker of the storage sys-
tem, a difference between the requested VM disk image
and a previous VM disk image representing a previous
VM backup; and

transmitting, by the backup logic of the storage system,
changes between the requested VM disk image and the
previous VM disk image to a target backup storage sys-
tem directly without going through the backup applica-
tion server, wherein the backup application server is a
separate server for managing backup of a plurality of
storage systems over the network.

11. The non-transitory computer-readable storage medium
of'claim 10, wherein the VM disk image includes one or more
disk snapshots created at the storage system based on a VM
snapshot created at the VMM.

12. The non-transitory computer-readable storage medium
of'claim 11, wherein the operations further comprise deleting
the one or more disk snapshots after the changes has been
transmitted to the target backup storage system.

13. The non-transitory computer-readable storage medium
of claim 12, wherein deletion of the one more disk snapshots
is performed by erasing a VM snapshot initiated by the VMM.

14. The non-transitory computer-readable storage medium
of'claim 10, wherein the difference between the disk snapshot
and the previous disk snapshot is determined based on disk
change tracking by the storage system.

15. The non-transitory computer-readable storage medium
of'claim 10, wherein the operations further comprise creating

10

15

20

25

30

35

40

45

50

55

60

16

at the target backup storage system the requested VM disk
image based on the transmitted changes and the previous VM
disk image.

16. The non-transitory computer-readable storage medium
of claim 10, wherein the storage system is a deduplicating
storage system.

17. The non-transitory computer-readable storage medium
of claim 10, wherein the target backup storage system is a
deduplicating storage system.

18. A storage system, comprising:

a processor;

a persistent storage device;

a backup logic executed by the processor configured to

receive a virtual machine (VM) snapshot front a host
system, the snapshot representing a consistent state of
a VM hosted by the host system, wherein the storage
system is communicatively coupled to the host sys-
tem over a storage network, wherein the VM snapshot
was captured by a virtual machine monitor (VMM) in
response to a first request received from a backup
application server via a VMM application program-
ming interface (API) over a network, and wherein the
VMM manages a plurality of VMs within the host
system,

store the VM snapshot in a persistent storage device of
the storage system as a VM disk image file,

receive a second request for an incremental backup of
the VM from the backup application server over the
network, the second request including a VM identifier
identifying a requested VM disk image associated
with a consistent state of the VM and

in response to the second request, identify by the VM
disk image file corresponding to the requested VM
disk image from the persistent storage device based
on the VM identifier; and

a disk tracker executed by the processor to determine a

difference between the requested VM disk image and a
previous VM disk image representing a previous VM
backup; and

wherein the backup logic is to transmit changes between

the requested VM disk image and the previous VM disk
image to a target backup storage system directly without
going through the backup application server. wherein
the backup application server is a separate server for
managing backup of a plurality of storage systems over
the network.

19. The storage system of claim 18, wherein the VM disk
image includes one or more disk snapshots created at the
storage system based on a VM snapshot created at the VMM.

20. The storage system of claim 19, wherein the backup
logic is further configured to delete the one or more disk
snapshots after the changes has been transmitted to the target
backup storage system.

21. The storage system of claim 20, wherein the further
deletion of the backup is to be triggered by erasing of a VM
snapshot initiated by the VMM.

22. The storage system of claim 18, wherein the difference
between the disk snapshot and the previous disk snapshot is to
be determined based on disk change tracking by the storage
system.

23. The storage system of claim 18 is a deduplicating
storage system.

